第三小节

     当出现异常浪涌电压波动时;浪涌波动是一个叠加在“馒头波”峰值上频率成分较高的瞬变脉冲,图5.11A所示;这个叠加的瞬变脉冲迅速通过并联在R4上面的C19(22000P)以较大的幅度对C25充电(由于浪涌脉冲的瞬变及C19容量较大,所以R4的降压作用很小)并加到U2C的6脚上,此时6脚电压迅速升高超过7脚电压;UC2的1脚输出迅即转变为低电平(零电平),图5.11B所示;此时D9导通拉低电磁炉功率控制电路U2A的5脚的电位,大幅度减少IGBT管的导通或关闭IGBT的工作。当浪涌过去后;由于C25的充电电压的释放有一个时间过程;U2C的6脚电压仍然维持一定时间超过7脚电压的过程;所以UC2的1脚低电平输出维持一个较长的时间过程;实际1脚波形如图5.11C所示,使电磁炉遇到一个短暂的浪涌时;也有一个较长的保护时间,这个保护启控的灵敏度及保护时间的长短与C19、C25的比值有关及和R1、R4、R5组成的时间常数有关(维修要加以考虑)。

                                          图5.11


    如果干扰脉冲的幅度较大而且持续的时间较长,就会使U2C在较长的一个时间段;6脚(反相输入端)的电压超过7脚电压;其1脚也在一个较长时间维持低电平,这个较长时间的持续低电平加到CPU U3的5脚,CPU识别后控制电磁炉进入停机状态。

  (2)市电220V过压保护:

     当电磁炉供电的220V交流市电出现持续过压时(在国内此现象普片发生),极易引起IGBT的击穿损坏,此时220V供电过压保护电路经过检测,立即经过U2A控制关闭IGBT工作,并且过压信息也同时送往CPU控制电磁炉关闭,电磁炉的工作进入保护状态。

  保护电路和浪涌脉冲保护为同一电路,图5.7所示;

     保护原理;(A)当市电电压上升出现过压时(这往往是一个持续时间较长的时间段);经过D1、D2整流后的“馒头波”幅度均上升,这些上升的“馒头波”经过R1、R4、R5分压后加到U2C的6脚电压(馒头波峰值)均大大的超过5V;如图5.12A所示;在图5.12A中红色“馒头波”表示输入的220V电压过压幅度比较小;蓝色“馒头波”表示输入的220V电压过压幅度比较大的两种情况。

    这些过压的“馒头波”在加到U2C的6脚同时也对C25进行充电,C25相当于一个小时间常数的滤波电容,也就是说由于C25的存在,延长了U2C的一脚低电平持续的时间。图5.12B表示没有C25时;U2C的1脚输出波形;可以看出图5.12B波形的低电平宽度相等于图5.12A中红色“馒头波”峰值部分超过5V电平线T部分的宽度。在红色“馒头波”过压的情况下,如果电路增加了C25;那么U2C的1脚输出低电平(图5.12C波形)的宽度就大于图5.12A中红色“馒头波”峰值部分超过5V电平线T部分的宽度,这是因为C25存储的电荷延迟维持了U2C的6脚电位的缘故。

    那么如果220V交流电出现较大幅度的过压,图5.12A蓝色“馒头波”所示,显然U2C的1脚输出的低电平宽度就更加延长;图5.12D所示,如果220V交流电出现更大幅度的过压;则U2C的1脚则维持持续低电平输出,图5.12E所示。U2C的1脚输出的各种不同的低电平就可以控制电磁炉IGBT大幅度降低功率,减少集电极振荡波幅度保护IGBT不被击穿。

                                                                     图5.12


   另外当出现220V交流过压时;R1、R4的连接点的过压信息经过R2加到CPU U3的19脚,CPU检测到出现过压时;即控制电磁炉进入关机保护状态,图5.13中红线所示。

                                           图5.13


  3、电磁炉过流保护:

    电磁炉工作时;由于负载过重或者是因为电压过高引起整机电流过大时;电磁炉极易引起损坏,为此;电磁炉均设置了整机过流保护电路。因为是电磁炉整机的过流保护,所以电路的检测取样设置在220V交流供电的输入电路中。图5.14中的红色线段表示部分。

  过流保护电路的组成和工作原理:

    过流保护电路的组成极为简单;就是在电磁炉的220V交流供电电路的一根输入线路上串接一只电流互感器T1,互感器输出绕组获得的互感电势经过整流后,加到CPU的18脚的电流检测输入端,图5.14所示。

                                                                 图5.14

上一篇
第二小节

下一篇
第四小节

上一篇:第二小节

下一篇:第四小节