第二小节

     当波形A(黑色)加到U2D的10脚时:从图中可以看出波形A(黑色)最大幅度(峰值)小于5V,当波形A加到U2D的10脚时候;波形A的峰值部分仍然小于5V,所以比较器U2D的同相输入端电位始终大于反相输入端,U2D的13脚输出端则始终是高电平输出,二极管D9反偏,此时的状态对电磁炉功率控制电路U2A没有任何影响。

     当波形B(蓝色)加到U2D的10脚时:从图中可以看出波形B(蓝色)最大幅度(峰值)部分已经超越5V,当波形B加到U2D的10脚时候;波形B的峰值部大于5V部分的这段时间;比较器U2D的同相输入端电位小于反相输入端,这段时间U2D的13脚输出端为低电平(零电平),图5.5最右边的蓝色电平曲线所示,在这一小段低电平期间二极管D9导通;拉低了电磁炉功率控制部分U2A的5脚电位;使电磁炉的输出功率略微下降,输出电压的幅度也下降到安全的区域。

     当波形C(红色)加到U2D的10脚时:从图中可以看出波形C(红色)最大幅度(峰值)部分已经大大的超越5V,在超越的时间上也比B(蓝色)波形多的多,当波形C加到U2D的10脚时候;波形C的峰值大于5V部分的这段较长时间;比较器U2D的同相输入端电位小于反相输入端,这段时间U2D的13脚输出端为低电平(零电平),由于超越的时间较长;低电平的宽度也较宽;图5.5最右边的红色电平曲线所示,在这较长一段低电平期间二极管D9导通;大幅度拉低了电磁炉功率控制部分U2A的5脚电位;使电磁炉的输出功率较大的下降,输出电压的幅度也较大幅度的下降到安全的区域。

     当持续性的幅度过大,证明电路出了故障,U2D的13脚产生较长时间的低电平也加到了CPU(U3)的5脚,当CPU的5脚检测到长时间低电平时,CPU内部的保护控制电路识别后,控制14脚发出中断信号,关闭了电磁炉的工作。

  2、 市电过压及浪涌脉冲电压保护:

     为了采用比较简单低廉的电路能输出较大的加热烹调功率,电磁炉一般采用单只IGBT作为功率输出管,供电采用220V交流市电直接整流滤波供电。此时无论是IGBT的集电极电压和集电极电流都接近了最大的极限工作状态,在这种情况下;供电源出现过压及浪涌(瞬时较大幅度电压波动)电压都极易引起IGBT功率管的损坏,为了防止IGBT功率管的损坏所以在一般的电磁炉内均设置了防止过压及浪涌波动的保护电路,在过压及浪涌波动出现时;大幅度的降低输出功率或关闭电磁炉的工作。

  (1)浪涌脉冲产生及保护:

     电磁炉的供电是220V的交流电网供电,由于供电电网中有大量感性电器设备在工作(例如空调、交流电机、电焊机等),这些大电流感性设备在开启、关闭的瞬间都会产生一个短暂的强干扰脉冲(电磁感应作用)窜入电网;叠加在220V正弦波交流电的波形上进入我们的电磁炉内,如果这些干扰脉冲的叠加位置正好和220V正弦波的峰值叠加;这些叠加脉冲的峰值幅度较大幅度的超过了220V交流电的峰值幅度,对电磁炉的安全工作又是一个极大的威胁。为了对付这种幅度较大的脉冲损坏电磁炉,在一般的电磁炉电路中都设置了浪涌脉冲电压的保护电路。

    图5.6所示;图中红色线段标注及红色标注的元件部分即为:IGBT集电极过压及浪涌保护控制电路

  浪涌脉冲保护控制原理:

     当电网电压具有幅度超过220V正弦交流电压峰值的浪涌脉冲到来时,这个浪涌电压的幅度叠加在IGBT的集电极,对于工作于极限状态的IGBT极易形成电压击穿;此时只要大幅减小IGBT的振荡波输出的幅度,就有效的减少了叠加浪涌脉冲叠加的威胁。这个保护控制电路的作用就是在具有幅度超过220V正弦交流电压峰值的浪涌脉冲到来时;通过保护控制电路大幅度的拉低电磁炉功率控制电路U2A的5脚的电位,大幅度减少IGBT管的导通时间,减少电磁炉的输出功率,IGBT集电极的电磁振荡波幅度也大幅度减小;使电路得以保护。

    电路的组成:该保护电路除了浪涌脉冲取样电路不同于上述的“IGBT集电极过压保护控制”外,后续保护电路的动作、原理是完全相同。

     由图5.6可以看出;由R1对220V整流电压进行降压取样,取样的直流电压;送往比较器U2C的6脚(反相输入端),U2C的7脚(同相输入端)连接 +5V作为比较器的比较电压。比较器的输出端1脚;经过D9接电磁炉功率控制电路U2A的5脚。

                                           图5.6

     电路设置:在电磁炉工作的正常状态;U2C 的6脚 经过R1获取的降压的电压幅度(峰值)略小于5V。这样电磁炉工作的正常状态,比较器U2C的同相输入端7脚电压始终大于反相输入端6脚电压,这样U2C的1脚输出端为高电平,此时D9反偏,1脚的高电平不会对U2A正常的功率控制有任何影响。

     当电网有异常的浪涌脉冲到来时;在该脉冲出现的瞬间,提高了U2C的6脚电压;6脚电压超过了7脚(5V)电压(在此瞬间;同相输入端电位小于反相输入端电位),U2C的1脚电位瞬时转变为低电平(零电平)输出;此时D9导通拉低了电磁炉功率控制部分U2A的5脚电位;使电磁炉的输出功率较大幅度的下降,输出电压的幅度也较大幅度的下降这样,浪涌过冲电压在IGBT的集电极出现,也不会对IGBT形成较大的威胁。,如果浪涌脉冲电压持续出现;则和前述一样导致CPU的5脚检测后控制电磁炉关机进入保护性关机状态。

                                            图5.7

     
  下面采用定量的方法来的分析浪涌脉冲保护控制电路的工作原理;图5.7所示;绘制出该电磁炉浪涌脉冲保护控制电路的实际电路图,
现在通过图5.7标注的元件数值;对浪涌脉冲保护控制电路进行定量的分析;

     【注:平时的220V正弦波交流市电的220V电压值是指:正弦波波形由中线(零轴)0V距正半周或负半周的0.707倍位置的幅度值,这个幅度值称为“有效值”,此时正弦波的最大值(峰值)即为:220V÷0.707=311V。平时所称的220V交流电是指有效值为220V的交流电,这个220V的交流电峰值为311V,图5.8所示。正峰点到负峰点的电压值(峰-峰值)是:622V,所以平时维修电器必须要注意人身安全】

                                               图5.8


   在图5.7中;D1、D2是市电220V电压整流管,图中可以看出;整流后并没有设置滤波电容,那么在正常情况下;其输出则是未经滤波的峰值电压为311V(220V交流市电的有效值为:220V。峰值则为:  220V÷0.707=311V)的“馒头波”。该峰值为311V的“馒头波”经过R1、R4、R5组成的串联的分压电路进行分压:R1(220K)和R4(220K)连接的分压点引出的电压经(155V)过R2降压后去CPU的19脚进行过压保护控制。R4和R5(6.8K)连接的分压点引出的峰值电压(4.8)送往U2C的6脚,图5.9上图所示,这是在正常市电输入情况下;UC2的6脚峰值电压(4.8V)幅度略低于7脚(5V)电压;UC2的1脚输出为高电平,图5.9下图蓝色5V电平线所示,图5.10所示是U2C比较器电路在220V正常市电供电状态下各引脚电压状态,可以看出当U2C的6脚电压低于7脚时;1脚输出为:高电平。

                                             图5.9

   
  所以在正常220V电压供电情况下;UC2的1脚输出为高电平。此时;D9截止,保护电路不会影响功率控制电路U2A的5脚的电位,电磁炉维持正常工作状态工作。

                                      图5.10

上一篇
第一小节

下一篇
第三小节

上一篇:第一小节

下一篇:第三小节