能量增益
本帖最后由 能量海 于 2017-8-9 21:42 编辑
我们必须考虑两种选择:
1.反电动势抑制 (1.1)
2.通过一个火花激励 (1.2)
这些选项是不同的
然而,在两种情况下,发生能量的增加是由于电荷泵浦自大地。在特斯拉先生的术语中为——“一个电荷漏斗”,或在现代术语中是“一个电荷泵”。
1. 第一种情况,对于振荡电路的问题是要“创建”一个在周围空间有着高强度电组分的电磁场。(理想情况下,只需要对高压电容器充分充电一次既可。此后,如果电路是无损的,那么振荡将无限期地维持下去而无需进一步的输入功率)。
这是一个“诱饵”,以吸引周围空间的电荷。
创建这样的“诱饵”只需很少的能量……
接着,把“诱饵”移向电路的一侧,这一侧是电荷之源(地)。现在的“诱饵”和电荷之间的分隔是如此之小,于是击穿发生。电路内在的寄生电容将被立即充电,在电路两端产生一个电压差,依次导致寄生振荡。这些振荡中所包含的能量就是我们想要捕获 并应用的能量增益。这种能量为负载提供功率。这非常有用的电磁场包含着我们的剩余能量,它振荡的方向垂直于“诱饵”场的振荡方向,而因为这种非常重要的差异,输出功率振荡不会摧毁它。这一重要因素的产生是因为线圈是用相反的两半绕制的。寄生振荡逐渐消失,传递所有的能量到负载。
这种能量增益重复再三,火花接着火花。火花产生越频繁,剩余功率输出越高。既是,火花频率越高(由跨火花隙的更高的电压引起),功率输出越高,并使过程的效率越高。几乎不曾需要过任何额外的“诱饵”能量。
2. 第二种情况,我们必须把电容器电路充电到高于能量本身来源的一个能级。乍一看,这似乎是不可能的任务,但问题的解决是相当容易的。
充电系统是被遮蔽的,或用特斯拉先生的术语来说是“盲目”的,以至它不能“看”到电容器里电荷的存在。要实现这一点,电容器的一端接地而另一端连接到高能线圈,线圈的另一端悬空。在连接到更高能级的通电线圈后,来自大地的电荷可以对电容器充电到一个非常高的电平。
这种情况下,充电系统“看”不到电荷已经在电容器里。每个脉冲被处理成好象是首次生成的脉冲。这样,电容器可以达到一个比其自身源更高的能级。
在能量的积累后,它会通过放电火花隙放电。之后,过程一次又一次地无限期重复……
这个过程不要求有反电动势的抑制
3. 应该注意到,上述的选项 1 和选项 2 可以结合起来。
能量增益
(对1.1和1.2秘密的评论)
(对1.1和1.2秘密的评论)
我们必须考虑两种选择:
1.反电动势抑制 (1.1)
2.通过一个火花激励 (1.2)
然而,在两种情况下,发生能量的增加是由于电荷泵浦自大地。在特斯拉先生的术语中为——“一个电荷漏斗”,或在现代术语中是“一个电荷泵”。
1. 第一种情况,对于振荡电路的问题是要“创建”一个在周围空间有着高强度电组分的电磁场。(理想情况下,只需要对高压电容器充分充电一次既可。此后,如果电路是无损的,那么振荡将无限期地维持下去而无需进一步的输入功率)。
这是一个“诱饵”,以吸引周围空间的电荷。
创建这样的“诱饵”只需很少的能量……
接着,把“诱饵”移向电路的一侧,这一侧是电荷之源(地)。现在的“诱饵”和电荷之间的分隔是如此之小,于是击穿发生。电路内在的寄生电容将被立即充电,在电路两端产生一个电压差,依次导致寄生振荡。这些振荡中所包含的能量就是我们想要捕获 并应用的能量增益。这种能量为负载提供功率。这非常有用的电磁场包含着我们的剩余能量,它振荡的方向垂直于“诱饵”场的振荡方向,而因为这种非常重要的差异,输出功率振荡不会摧毁它。这一重要因素的产生是因为线圈是用相反的两半绕制的。寄生振荡逐渐消失,传递所有的能量到负载。
这种能量增益重复再三,火花接着火花。火花产生越频繁,剩余功率输出越高。既是,火花频率越高(由跨火花隙的更高的电压引起),功率输出越高,并使过程的效率越高。几乎不曾需要过任何额外的“诱饵”能量。
2. 第二种情况,我们必须把电容器电路充电到高于能量本身来源的一个能级。乍一看,这似乎是不可能的任务,但问题的解决是相当容易的。
充电系统是被遮蔽的,或用特斯拉先生的术语来说是“盲目”的,以至它不能“看”到电容器里电荷的存在。要实现这一点,电容器的一端接地而另一端连接到高能线圈,线圈的另一端悬空。在连接到更高能级的通电线圈后,来自大地的电荷可以对电容器充电到一个非常高的电平。
这种情况下,充电系统“看”不到电荷已经在电容器里。每个脉冲被处理成好象是首次生成的脉冲。这样,电容器可以达到一个比其自身源更高的能级。
在能量的积累后,它会通过放电火花隙放电。之后,过程一次又一次地无限期重复……
这个过程不要求有反电动势的抑制
3. 应该注意到,上述的选项 1 和选项 2 可以结合起来。
上一篇
火花激励发电机的现代选项
下一篇
秘密2-可用开关控制的电感
上一篇:火花激励发电机的现代选项
下一篇:秘密2-可用开关控制的电感